

THE HONG KONG UNIVERSITY OF SCIENCE & TECHNOLOGY

Department of Mathematics

SEMINAR ON SCIENTIFIC COMPUTATION

A fourth-order conservative semi-Lagrangian finite volume WENO scheme without operator splitting for kinetic and fluid simulations

by

Prof. Jianxian QIU

School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific Computing, Xiamen University

Abstract

In this presentation, we present a fourth-order conservative semi-Lagrangian (SL) finite vol-ume (FV) weighted essentially non-oscillatory (WENO) scheme without operator splitting for two-dimensional linear transport equations with applications of kinetic models including the nonlinear Vlasov-Poisson system, the guiding center Vlasov model and the incompressible Euler equation in the vorticity-stream function formulation. To achieve fourth-order accuracy in space, two main ingredients are proposed in the SL FV formulation. Firstly, we introduce a so-called cubic-curved quadrilateral upstream cell and applying an efficient clipping method to evaluate integrals on upstream cells. Secondly, we construct a new WENO reconstruction operator, which recovers a P3 polynomial from neighboring cell averages. Mass conservation is accomplished with the mass conservative nature of the reconstruction operator and the SL formulation. A positivity-preserving limiter is applied to maintain the positivity of the numerical solution wherever appropriate. For nonlinear kinetic models, the SL scheme is coupled with a fourth-order Runge-Kutta exponential integrator for high-order temporal accuracy. Extensive bench marks are tested to verify the designed properties.

Date : 31 May 2023 (Wednesday) Time : 4:00pm – 5:00pm Venue : Room 5510 (Lifts 25/26)

All are Welcome!